EconPapers    
Economics at your fingertips  
 

Discovery of fault-introducing tool groups with a numerical association rule mining method in a printed circuit board production line

Yeonju Lee, Youngju Kim, Bogyeong Lee and Chang Ouk Kim

International Journal of Production Research, 2024, vol. 62, issue 9, 3305-3319

Abstract: Large-scale manufacturers aim to reduce the number of faulty products by finding tools or process factors that cause product faults through tool monitoring. The causes of faulty electronic components such as semiconductor chips and printed circuit boards (PCBs) include abnormalities in single tools and abnormalities caused by interactions between the tools of a specific process and a related process. Here, the tools exhibiting an interaction effect are called the fault-introducing tool group. This study presents a numerical association rule mining method for discovering the fault-introducing tool groups based on a genetic algorithm. A novel fitness function and rule pruning process are developed to identify the fault-introducing tool groups. The effectiveness of the method is verified using simulations and a case study of actual PCB production lines. The proposed method can discover fault-introducing tool groups better than machine learning algorithms. Additionally, the method can accurately identify fault-introducing tool groups in various manufacturing environments, such as those with highly skewed yield distributions or variations in yield distributions over time. In an actual PCB production line, the groups identified by the proposed method produced up to 36.5% more faulty chips than those identified by the comparison models.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2231088 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:9:p:3305-3319

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2023.2231088

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:62:y:2024:i:9:p:3305-3319