Artificial intelligence in supply chain and operations management: a multiple case study research
Violetta Giada Cannas,
Maria Pia Ciano,
Mattia Saltalamacchia and
Raffaele Secchi
International Journal of Production Research, 2024, vol. 62, issue 9, 3333-3360
Abstract:
Artificial intelligence (AI) is increasingly considered a source of competitive advantage in operations and supply chain management (OSCM). However, many organisations still struggle to adopt it successfully and empirical studies providing clear indications are scarce in the literature. This research aims to shed light on how AI applications can support OSCM processes and to identify benefits and barriers to their implementation. To this end, it conducts a multiple case study with semi-structured interviews in six companies, totalling 17 implementation cases. The Supply Chain Operations Reference (SCOR) model guided the entire study and the analysis of the results by targeting specific processes. The results highlighted how AI methods in OSCM can increase the companies’ competitiveness by reducing costs and lead times and improving service levels, quality, safety, and sustainability. However, they also identify barriers in the implementation of AI, such as ensuring data quality, lack of specific skills, need for high investments, lack of clarity on economic benefits and lack of experience in cost analysis for AI projects. Although the nature of the study is not suitable for wide generalisation, it offers clear guidance for practitioners facing AI dilemmas in specific SCOR processes and provides the basis for further future research.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2232050 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:9:p:3333-3360
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2232050
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().