EconPapers    
Economics at your fingertips  
 

Spatiotemporal correlation modelling for machine learning-based traffic state predictions: state-of-the-art and beyond

Haipeng Cui, Qiang Meng, Teck-Hou Teng and Xiaobo Yang

Transport Reviews, 2023, vol. 43, issue 4, 780-804

Abstract: Predicting traffic states has gained more attention because of its practical significance. However, the existing literature lacks a critical review regarding how to address the spatiotemporal correlation in the ML-based traffic state prediction models from a traffic-oriented perspective. Therefore, this study aims to comprehensively and critically review the spatiotemporal correlation modelling (STCM) approaches adopted for developing ML-based traffic state prediction models and provide future research directions based on traffic-oriented characteristics and ML techniques. Concretely, we investigate the neural network-based traffic state prediction models and characterise the STCM of these models by a proposed systematic review framework including three components: (i) spatial feature representation that demonstrates how the spatial information regarding road network is formulated, (ii) temporal feature representation that illustrates a variety of approaches to extract the temporal features, and (iii) model structure analyses the model layout to address the spatial correlations and temporal correlations simultaneously. Finally, several open challenges regarding incorporating traffic-oriented characteristics such as signal effects with ML techniques are put up with future research directions provided and discussed.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01441647.2023.2171151 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:transr:v:43:y:2023:i:4:p:780-804

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TTRV20

DOI: 10.1080/01441647.2023.2171151

Access Statistics for this article

Transport Reviews is currently edited by Professor David Banister and Moshe Givoni

More articles in Transport Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:transr:v:43:y:2023:i:4:p:780-804