EconPapers    
Economics at your fingertips  
 

A dynamic target volatility strategy for asset allocation using artificial neural networks

Youngmin Kim and David Enke

The Engineering Economist, 2018, vol. 63, issue 4, 273-290

Abstract: A challenge to developing data-driven approaches in finance and trading is the limited availability of data because periods of instability, such as during financial market crises, are relatively rare. This study applies a stability-oriented approach (SOA) based on statistical tests to compare data for the current period to a past set of data for a stable period, providing higher reliability due to a more abundant source of data. Based on an SOA, this study uses an artificial neural network (ANN), which is one of the commonly applied machine learning algorithms, for simultaneously forecasting the volatility and classifying the level of market stability. In addition, this study develops a dynamic target volatility strategy for asset allocation using an ANN to enhance the ability of a target volatility strategy that is established for automatically allocating capital between a risky asset and a risk-free cash position. In order to examine the impact of the proposed strategy, the results are compared to the buy-and-hold strategy, the static asset allocation strategy, and the conventional target volatility strategy using different volatility forecasting methodologies. An empirical case study of the proposed strategy is simulated in both the Korean and U.S. stock markets.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/0013791X.2018.1461287 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uteexx:v:63:y:2018:i:4:p:273-290

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTEE20

DOI: 10.1080/0013791X.2018.1461287

Access Statistics for this article

The Engineering Economist is currently edited by Sarah Ryan

More articles in The Engineering Economist from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uteexx:v:63:y:2018:i:4:p:273-290