Estimation of Bounded Location and Scale Parameters
Tatsuya Kubokawa
Additional contact information
Tatsuya Kubokawa: Faculty of Economics, University of Tokyo
No CIRJE-F-296, CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo
Abstract:
When a location parameter is restricted to a bounded interval, the paper addresses the issue of deriving estimators improving on the best location equivariant (or Pitman) estimator under the squared error loss. A class of improved estimators is constructed, and it is verified that the Bayes estimator against the uniform prior over the bounded interval and the truncated estimator belongs to the class. When a symmetric density is considered for the location family, the paper obtains sufficient conditions on hte density under which the class includes the Bayes estimators with respect to the two-point boundary symmetric prior and general continuous prior distributions. It is demonstrated that the conditions on the symmetric density can be applied to logistic, double exponential and t-distributions as well as a normal distribution. The conditions can be also applied to scale mixtures of normal distributions. Finally, some similar results are developed in the scale family.
Pages: 29 pages
Date: 2004-08
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tky:fseres:2004cf296
Access Statistics for this paper
More papers in CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo Contact information at EDIRC.
Bibliographic data for series maintained by CIRJE administrative office ().