A Variable Selection Criterion for Linear Discriminant Rule and its Optimality in High Dimensional Setting
Masashi Hyodo and
Tatsuya Kubokawa
Additional contact information
Masashi Hyodo: Graduate School of Economics, University of Tokyo
Tatsuya Kubokawa: Faculty of Economics, University of Tokyo
No CIRJE-F-872, CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo
Abstract:
In this paper, we suggest the new variable selection procedure, called MEC, for linear discriminant rule in the high-dimensional setup. MEC is derived as a second-order unbiased estimator of the misclassi cation error probability of the lin- ear discriminant rule. It is shown that MEC not only decomposes into ` tting' and `penalty' terms like AIC and Mallows C p , but also possesses an asymptotic optimal- ity in the sense that MEC achieves the smallest possible conditional probability of misclassi cation in candidate variable sets. Through simulation studies, it is shown that MEC has good performances in the sense of selecting the true variable sets.
Pages: 23 pages
Date: 2012-12
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.cirje.e.u-tokyo.ac.jp/research/dp/2012/2012cf872.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tky:fseres:2012cf872
Access Statistics for this paper
More papers in CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo Contact information at EDIRC.
Bibliographic data for series maintained by CIRJE administrative office ().