Efficient GMM Estimation with Incomplete Data
Chris Muris
The Review of Economics and Statistics, 2020, vol. 102, issue 3, 518-530
Abstract:
In the standard missing data model, data are either complete or completely missing. However, applied researchers face situations with an arbitrary number of strata of incompleteness. Examples include unbalanced panels and instrumental variables settings where some observations are missing some instruments. I propose a model for settings where observations may be incomplete, with an arbitrary number of strata of incompleteness. I derive a set of moment conditions that generalizes those in Graham's (2011) standard missing data setup. I derive the associated efficiency bound and propose efficient estimators. Identification can be achieved even if it fails in each stratum of incompleteness.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.mitpressjournals.org/doi/pdf/10.1162/rest_a_00836 (application/pdf)
Access to PDF is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:102:y:2020:i:3:p:518-530
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press ().