Weighted metric multidimensional scaling
Michael Greenacre
Economics Working Papers from Department of Economics and Business, Universitat Pompeu Fabra
Abstract:
This paper establishes a general framework for metric scaling of any distance measure between individuals based on a rectangular individuals-by-variables data matrix. The method allows visualization of both individuals and variables as well as preserving all the good properties of principal axis methods such as principal components and correspondence analysis, based on the singular-value decomposition, including the decomposition of variance into components along principal axes which provide the numerical diagnostics known as contributions. The idea is inspired from the chi-square distance in correspondence analysis which weights each coordinate by an amount calculated from the margins of the data table. In weighted metric multidimensional scaling (WMDS) we allow these weights to be unknown parameters which are estimated from the data to maximize the fit to the original distances. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing a matrix and displaying its rows and columns in biplots.
Keywords: Biplot; correspondence analysis; distance; multidimensional scaling; singular-value decomposition (search for similar items in EconPapers)
JEL-codes: C19 C88 (search for similar items in EconPapers)
Date: 2004-09
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://econ-papers.upf.edu/papers/777.pdf Whole Paper (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:upf:upfgen:777
Access Statistics for this paper
More papers in Economics Working Papers from Department of Economics and Business, Universitat Pompeu Fabra
Bibliographic data for series maintained by ( this e-mail address is bad, please contact ).