Predictive modeling of foreign exchange trading signals using machine learning techniques
Sugarbayar Enkhbayar and
Robert Ślepaczuk
Additional contact information
Sugarbayar Enkhbayar: University of Warsaw, Faculty of Economic Sciences, Quantitative Finance Research Group
No 2024-10, Working Papers from Faculty of Economic Sciences, University of Warsaw
Abstract:
This study aimed to apply the algorithmic trading strategy on major foreign exchange pairs and compare the performances of machine learning-based strategies and traditional trend-following strategies with benchmark strategies. It differs from other studies in that it considered a wide variety of cases including different foreign exchange pairs, return methods, data frequency, and individual and integrated trading strategies. Ridge regression, KNN, RF, XGBoost, GBDT, ANN, LSTM, and GRU models were used for the machine learning-based strategy, while the MA cross strategy was employed for the trend-following strategy. Backtests were performed on 6 major pairs in the period from January 1, 2000, to June 30, 2023, and daily, and intraday data were used. The Sharpe ratio was considered as a metric used to refer to economic significance, and the independent t-test was used to determine statistical significance. The general findings of the study suggested that the currency market has become more efficient. The rise in efficiency is probably caused by the fact that more algorithms are being used in this market, and information spreads much faster. Instead of finding one trading strategy that works well on all major foreign exchange pairs, our study showed it’s possible to find an effective algorithmic trading strategy that generates a more effective trading signal in each specific case.
Keywords: machine learning; algorithmic trading; foreign exchange market; rolling walk-forward optimization; technical indicators (search for similar items in EconPapers)
JEL-codes: C14 C4 C45 C53 C58 G13 (search for similar items in EconPapers)
Pages: 50 pages
Date: 2024
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.wne.uw.edu.pl/download_file/4308/0 First version, 2024 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:war:wpaper:2024-10
Access Statistics for this paper
More papers in Working Papers from Faculty of Economic Sciences, University of Warsaw Contact information at EDIRC.
Bibliographic data for series maintained by Marcin Bąba (mbaba@wne.uw.edu.pl).