EconPapers    
Economics at your fingertips  
 

Mixture distribution‐based forecasting using stochastic volatility models

Adam Clements, Stan Hurn and S. I. White

Applied Stochastic Models in Business and Industry, 2006, vol. 22, issue 5‐6, 547-557

Abstract: Many traditional econometric methods forecast the conditional distribution of asset returns by a point prediction of volatility. Alternatively, forecasts of this distribution may be generated from a mixture of distributions. This paper proposes a method by which information extracted from the estimation of a standard stochastic volatility model (using non‐linear filtering) can be used to generate mixture distribution forecasts. In general, it is found that forecasts based on mixture distributions are superior to those simply using point predictions of volatility. In terms of mixture distribution forecasts, the method proposed in this paper is found to be superior to a number of competing approaches. Copyright © 2006 John Wiley & Sons, Ltd.

Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asmb.647

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:22:y:2006:i:5-6:p:547-557

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:apsmbi:v:22:y:2006:i:5-6:p:547-557