Estimating retail demand with Poisson mixtures and out‐of‐sample likelihood
Howard Hao‐Chun Chuang and
Rogelio Oliva
Applied Stochastic Models in Business and Industry, 2014, vol. 30, issue 4, 455-463
Abstract:
Estimation of retail demand is critical to decisions about procuring, shipping, and shelving. The idea of Poisson demand process is central to retail inventory management and numerous studies suggest that negative binomial (NB) distribution characterize retail demand well. In this study, we reassess the adequacy of estimating retail demand with the NB distribution. We propose two Poisson mixtures—the Poisson–Tweedie family (PTF) and the Conway–Maxwell–Poisson distribution—as generic alternatives to the NB distribution. On the basis of the principle of likelihood and information theory, we adopt out‐of‐sample likelihood as a metric for model selection. We test the procedure on consumer demand for 580 stock‐keeping unit store sales datasets. Overall the PTF and the Conway–Maxwell–Poisson distribution outperform the NB distribution for 70% of the tested samples. As a general case of the NB model, the PTF has particularly strong performance for datasets with relatively small means and high dispersion. Our finding carries useful implications for researchers and practitioners who seek for flexible alternatives to the oft‐used NB distribution in characterizing retail demand. Copyright © 2013 John Wiley & Sons, Ltd.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asmb.1986
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:30:y:2014:i:4:p:455-463
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().