EconPapers    
Economics at your fingertips  
 

Modeling first bid in retail secondary market online auctions: A Bayesian approach

Babak Zafari and Refik Soyer

Applied Stochastic Models in Business and Industry, 2020, vol. 36, issue 3, 452-464

Abstract: We propose a Bayesian framework to model bid placement time in retail secondary market online business‐to‐business auctions. In doing so, we propose a Bayesian beta regression model to predict the first bidder and time to first bid, and a dynamic probit model to analyze participation. In our development, we consider both auction‐specific and bidder‐specific explanatory variables. While we primarily focus on the predictive performance of the models, we also discuss how auction features and bidders' heterogeneity could affect the bid timings, as well as auction participation. We illustrate the implementation of our models by applying to actual auction data and discuss additional insights provided by the Bayesian approach, which can benefit auctioneers.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asmb.2498

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:36:y:2020:i:3:p:452-464

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:apsmbi:v:36:y:2020:i:3:p:452-464