Modeling first bid in retail secondary market online auctions: A Bayesian approach
Babak Zafari and
Refik Soyer
Applied Stochastic Models in Business and Industry, 2020, vol. 36, issue 3, 452-464
Abstract:
We propose a Bayesian framework to model bid placement time in retail secondary market online business‐to‐business auctions. In doing so, we propose a Bayesian beta regression model to predict the first bidder and time to first bid, and a dynamic probit model to analyze participation. In our development, we consider both auction‐specific and bidder‐specific explanatory variables. While we primarily focus on the predictive performance of the models, we also discuss how auction features and bidders' heterogeneity could affect the bid timings, as well as auction participation. We illustrate the implementation of our models by applying to actual auction data and discuss additional insights provided by the Bayesian approach, which can benefit auctioneers.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asmb.2498
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:36:y:2020:i:3:p:452-464
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().