Generalized discrete autoregressive moving‐average models
Tobias A. Möller and
Christian H. Weiß
Applied Stochastic Models in Business and Industry, 2020, vol. 36, issue 4, 641-659
Abstract:
This article proposes the generalized discrete autoregressive moving‐average (GDARMA) model as a parsimonious and universally applicable approach for stationary univariate or multivariate time series. The GDARMA model can be applied to any type of quantitative time series. It allows to compute moment properties in a unique way, and it exhibits the autocorrelation structure of the traditional ARMA model. This great flexibility is obtained by using data‐specific variation operators, which is illustrated for the most common types of time series data, such as counts, integers, reals, and compositional data. The practical potential of the GDARMA approach is demonstrated by considering a time series of integers regarding votes for a change of the interest rate, and a time series of compositional data regarding television market shares.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asmb.2520
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:36:y:2020:i:4:p:641-659
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().