Covariate‐dependent control limits for the detection of abnormal price changes in scanner data
Youngrae Kim,
Sangkyun Kim,
Johan Lim,
Sungim Lee,
Won Son and
Heejin Hwang
Applied Stochastic Models in Business and Industry, 2020, vol. 36, issue 5, 783-794
Abstract:
Currently, large‐scale data for consumer goods, called scanner data, are obtained by scanning the bar codes of individual products at the points of sale of retail outlets. Many national statistical offices use scanner data to build consumer price statistics. In this process, as in other statistical procedures, the detection of abnormal transactions in sales prices is an important step in the analysis. Popular methods for conducting such outlier detection are the quartile method, the Hidiroglou‐Berthelot method, the resistant fences method, and the Tukey algorithm. These methods are based solely on information about price changes and not on any of the other covariates (eg, sales volume or types of retail shops) that are also available from scanner data. In this article, we propose a new method to detect abnormal price changes that take into account an additional covariate, namely, sales volume. We assume that the variance of the log of the price change is a smooth function of the sales volume and estimate the function from previously observed data. We numerically show the advantages of the new method over existing methods. We also apply the methods to real scanner data collected at weekly intervals by the Korean Chamber of Commerce and Industry between 2013 and 2014 and compare their performance.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asmb.2529
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:36:y:2020:i:5:p:783-794
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().