EconPapers    
Economics at your fingertips  
 

Generalised additive point process models for natural hazard occurrence

Benjamin D. Youngman and Theodoros Economou

Environmetrics, 2017, vol. 28, issue 4

Abstract: Point processes are a natural class of models for representing occurrences of various types of natural hazard event. Flexibly implementing such models is often hindered by intractable likelihood forms. Consequently, the rates of point processes tend to be reduced to parametric forms, or the processes are discretised to give data of readily modelled “count‐per‐unit” type. This work proposes generalised additive model forms for point process rates. The resulting low‐rank spatiotemporal representations of rates, coupled with the Laplace approximation, makes the restricted likelihood relatively tractable and hence inference for such models possible. The models can also be interpreted from a regression perspective. The proposed models are used to estimate different types of Cox process and then spatiotemporal variation in European windstorms. Through a combination of thin‐plate and cubic regression splines and their tensor product, established relationships between where windstorms occur and the state of the North Atlantic Oscillation are confirmed and then expanded to bring detailed understanding of within‐year variation, which has otherwise not been possible with count‐based models.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/env.2444

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:28:y:2017:i:4:n:e2444

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:envmet:v:28:y:2017:i:4:n:e2444