Bayesian time‐varying quantile regression to extremes
Fernando Ferraz Do Nascimento and
Marcelo Bourguignon
Environmetrics, 2020, vol. 31, issue 2
Abstract:
Maximum analysis consists of modeling the maximums of a data set by considering a specific distribution. Extreme value theory (EVT) shows that, for a sufficiently large block size, the maxima distribution is approximated by the generalized extreme value (GEV) distribution. Under EVT, it is important to observe the high quantiles of the distribution. In this sense, quantile regression techniques fit the data analysis of maxima by using the GEV distribution. In this context, this work presents the quantile regression extension for the GEV distribution. In addition, a time‐varying quantile regression model is presented, and the important properties of this approach are displayed. The parameter estimation of these new models is carried out under the Bayesian paradigm. The results of the temperature data and river quota application show the advantage of using this model, which allows us to estimate directly the quantiles as a function of the covariates. This shows which of them influences the occurrence of extreme temperature and the magnitude of this influence.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2596
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:31:y:2020:i:2:n:e2596
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().