EconPapers    
Economics at your fingertips  
 

Multivariate nearest‐neighbors Gaussian processes with random covariance matrices

Isabelle Grenier, Bruno Sansó and Jessica L. Matthews

Environmetrics, 2024, vol. 35, issue 3

Abstract: We propose a non‐stationary spatial model based on a normal‐inverse‐Wishart framework, conditioning on a set of nearest‐neighbors. The model, called nearest‐neighbor Gaussian process with random covariance matrices is developed for both univariate and multivariate spatial settings and allows for fully flexible covariance structures that impose no stationarity or isotropic restrictions. In addition, the model can handle duplicate observations and missing data. We consider an approach based on integrating out the spatial random effects that allows fast inference for the model parameters. We also consider a full hierarchical approach that leverages the sparse structures induced by the model to perform fast Monte Carlo computations. Strong computational efficiency is achieved by leveraging the adaptive localized structure of the model that allows for a high level of parallelization. We illustrate the performance of the model with univariate and bivariate simulations, as well as with observations from two stationary satellites consisting of albedo measurements.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/env.2839

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:35:y:2024:i:3:n:e2839

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:envmet:v:35:y:2024:i:3:n:e2839