Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy data: A Bayesian model approach
Elliot S. Shannon,
Andrew O. Finley,
Daniel J. Hayes,
Sylvia N. Noralez,
Aaron R. Weiskittel,
Bruce D. Cook and
Chad Babcock
Environmetrics, 2024, vol. 35, issue 4
Abstract:
Geolocation error in spaceborne sampling light detection and ranging (LiDAR) measurements of forest structure can compromise forest attribute estimates and degrade integration with georeferenced field measurements or other remotely sensed data. Data integration is especially problematic when geolocation error is not well quantified. We propose a general model that uses airborne laser scanning data to quantify and correct geolocation error in spaceborne sampling LiDAR. To illustrate the model, LiDAR data from NASA Goddard's LiDAR Hyperspectral and Thermal Imager (G‐LiHT) was used with a subset of LiDAR data from NASA's Global Ecosystem Dynamics Investigation (GEDI). The model accommodates multiple canopy height metrics derived from a simulated GEDI footprint kernel using spatially coincident G‐LiHT, and incorporates both additive and multiplicative mapping between the canopy height metrics generated from both datasets. A Bayesian implementation provides probabilistic uncertainty quantification in both parameter and geolocation error estimates. Results show a systematic geolocation error of 9.62 m in the southwest direction. In addition, estimated geolocation errors within GEDI footprints were highly variable, with results showing a ∼$$ \sim $$0.45 probability the true footprint center is within 20 m. Estimating and correcting geolocation error via the model outlined here can help inform subsequent efforts to integrate spaceborne LiDAR data, like GEDI, with other georeferenced data.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2840
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:35:y:2024:i:4:n:e2840
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().