EconPapers    
Economics at your fingertips  
 

EM algorithm for generalized Ridge regression with spatial covariates

Said Obakrim, Pierre Ailliot, Valérie Monbet and Nicolas Raillard

Environmetrics, 2024, vol. 35, issue 6

Abstract: The generalized Ridge penalty is a powerful tool for dealing with multicollinearity and high‐dimensionality in regression problems. The generalized Ridge regression can be derived as the mean of a posterior distribution with a Normal prior and a given covariance matrix. The covariance matrix controls the structure of the coefficients, which depends on the particular application. For example, it is appropriate to assume that the coefficients have a spatial structure when the covariates are spatially correlated. This study proposes an Expectation‐Maximization algorithm for estimating generalized Ridge parameters whose covariance structure depends on specific parameters. We focus on three cases: diagonal (when the covariance matrix is diagonal with constant elements), Matérn, and conditional autoregressive covariances. A simulation study is conducted to evaluate the performance of the proposed method, and then the method is applied to predict ocean wave heights using wind conditions.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/env.2871

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:35:y:2024:i:6:n:e2871

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-09-24
Handle: RePEc:wly:envmet:v:35:y:2024:i:6:n:e2871