EconPapers    
Economics at your fingertips  
 

Modeling Anisotropy and Non‐Stationarity Through Physics‐Informed Spatial Regression

Matteo Tomasetto, Eleonora Arnone and Laura M. Sangalli

Environmetrics, 2024, vol. 35, issue 8

Abstract: Many spatially dependent phenomena that are of interest in environmental problems are characterized by strong anisotropy and non‐stationarity. Moreover, the data are often observed over regions with complex conformations, such as water bodies with complicated shorelines or regions with complex orography. Furthermore, the distribution of the data locations may be strongly inhomogeneous over space. These issues may challenge popular approaches to spatial data analysis. In this work, we show how we can accurately address these issues by spatial regression with differential regularization. We model the spatial variation by a Partial Differential Equation (PDE), defined upon the considered spatial domain. This PDE may depend upon some unknown parameters that we estimate from the data through an appropriate profiling estimation approach. The PDE may encode some available problem‐specific information on the considered phenomenon, and permit a rich modeling of anisotropy and non‐stationarity. The performances of the proposed approach are compared to competing methods through simulation studies and real data applications. In particular, we analyze rainfall data over Switzerland, characterized by strong anisotropy, and oceanographic data in the Gulf of Mexico, characterized by non‐stationarity due to the Gulf Stream.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/env.2889

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:35:y:2024:i:8:n:e2889

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009

Access Statistics for this article

More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-04-12
Handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2889