Applying sequential adaptive strategies for sampling animal populations: An empirical study
Rosa M. Di Biase and
Fulvia Mecatti
Environmetrics, 2025, vol. 36, issue 1
Abstract:
Traditional sampling methods may prove inadequate when dealing with spatially clustered populations or when studying rare events or traits that are not easily detectable across the target population. When both scenarios occur simultaneously, adaptive sampling strategies can represent a viable option to enhance the detectability of cases of interest. This paper delves into the application of a novel class of sequential adaptive sampling strategies to animal surveys. These strategies, originally proposed for human population tuberculosis prevalence surveys, allow oversampling of the rare interest variables while managing on‐field constraints. This ensures that the unfixed sample size, typical of adaptive sampling, does not compromise overall cost‐effectiveness. We explore a strategy within this class that integrates an adaptive component into a Poisson sequential selection. The aim is twofold: to intensify the detection of cases by exploiting the spatial clustering and to provide a flexible framework for managing logistics and budget constraints. To illustrate the strengths and weaknesses of this Poisson‐based sequential adaptive sampling strategy compared to traditional sampling methods, a simulation study was conducted on a blue‐winged teal population in Florida, USA. The results showcase the benefits of the proposed strategy and open avenues for future methodological and practical improvements.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/env.2870
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:envmet:v:36:y:2025:i:1:n:e2870
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1180-4009
Access Statistics for this article
More articles in Environmetrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().