Bayesian estimation of cost‐effectiveness: an importance‐sampling approach
Daniel F. Heitjan and
Huiling Li
Health Economics, 2004, vol. 13, issue 2, 191-198
Abstract:
We describe a method for estimating the cost‐effectiveness of a new treatment compared to a standard, using data from a comparative clinical trial. We quantify the clinical effectiveness as a binary variable indicating success or failure. The underlying statistical model assumes that costs are uncensored and follow separate gamma distributions in each of the groups defined by the four possible combinations of treatment arm and effectiveness outcome. The method is subjectivist, in that it represents prior uncertainty about model parameters with a probability distribution, which we update via Bayes's theorem to produce a posterior distribution. We approximate the posterior by importance sampling, a straightforward simulation method. We illustrate the method with an analysis of cost (derived from resource usage data) and effectiveness (measured by one‐year survival) in a clinical trial in heart disease. The example demonstrates that the method is practical and provides for a flexible data analysis. Copyright © 2003 John Wiley & Sons, Ltd.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/hec.825
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:hlthec:v:13:y:2004:i:2:p:191-198
Access Statistics for this article
Health Economics is currently edited by Alan Maynard, John Hutton and Andrew Jones
More articles in Health Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().