Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods
Bas Groot Koerkamp,
M. G. Myriam Hunink,
Theo Stijnen and
Milton C. Weinstein
Health Economics, 2006, vol. 15, issue 4, 383-392
Abstract:
Decisions in health care must be made, despite uncertainty about benefits, risks, and costs. Value of information analysis is a theoretically sound method to estimate the expected value of future quantitative research pertaining to an uncertain decision. If the expected value of future research does not exceed the cost of research, additional research is not justified, and decisions should be based on current evidence, despite the uncertainty. To assess the importance of individual parameters relevant to a decision, different value of information methods have been suggested. The generally recommended method assumes that the expected value of perfect knowledge concerning a parameter is estimated as the reduction in expected opportunity loss. This method, however, results in biased expected values and incorrect importance ranking of parameters. The objective of this paper is to set out the correct methods to estimate the partial expected value of perfect information and to demonstrate why the generally recommended method is incorrect conceptually and mathematically. Copyright © 2005 John Wiley & Sons, Ltd.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1002/hec.1064
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:hlthec:v:15:y:2006:i:4:p:383-392
Access Statistics for this article
Health Economics is currently edited by Alan Maynard, John Hutton and Andrew Jones
More articles in Health Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().