A portfolio construction framework using LSTM‐based stock markets forecasting
Zeynep Cipiloglu Yildiz and
Selim Baha Yildiz
International Journal of Finance & Economics, 2022, vol. 27, issue 2, 2356-2366
Abstract:
A novel framework that injects future return predictions into portfolio constructionstrategies is proposed in this study. First, a long–short‐term‐memory (LSTM) model is trained to learn the monthly closing prices of the stocks. Then these predictions are used in the calculation of portfolio weights. Five different portfolio construction strategies are introduced including modifications to smart‐beta strategies. The suggested methods are compared to a number of baseline methods, using the stocks of BIST30 Turkey index. Our strategies yield a very high mean annualized return (25%) which is almost 50% higher than the baseline approaches. The mean Sharpe ratio of our strategies is 0.57, whereas the compared methods’ are 0.29 and −0.32. Comprehensive analysis of the results demonstrates that utilizing predicted returns in portfolio construction enables a significant improvement on the performance of the portfolios.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/ijfe.2277
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:ijfiec:v:27:y:2022:i:2:p:2356-2366
Ordering information: This journal article can be ordered from
http://jws-edcv.wile ... PRINT_ISSN=1076-9307
Access Statistics for this article
International Journal of Finance & Economics is currently edited by Mark P. Taylor, Keith Cuthbertson and Michael P. Dooley
More articles in International Journal of Finance & Economics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().