EconPapers    
Economics at your fingertips  
 

A privacy‐focused approach for anomaly detection in IoT networks

Pedro Martins, André B. Reis, Paulo Salvador and Susana Sargento

International Journal of Network Management, 2022, vol. 32, issue 1

Abstract: IoT devices present a series of liabilities to administrators that aim for fully secure networks. Owing to their heterogeneity and limited processing power, administrators often implement monitoring mechanisms to prevent unauthorized use of resources and data exfiltration. However, most approaches allow for easy discrimination of private behavioral patterns of its users or nodes by their MAC or IP addresses. Inferring data exchange patterns at the physical layer is a more complex task, as a single signal power indicator may correspond to a mixture of simultaneous data transmissions. This article proposes privacy‐focused mechanisms by resorting to physical layer data analysis and one‐class classification models to perform anomaly detection in IoT networks. We present a full processing pipeline that considers the signal that identifies and models patterns on the channel activity and silence periods. We train our models with data captured from interactions with an Amazon Echo with devices generating background noise and test them against a similar scenario with a tampered network node periodically uploading data. Our data show that the best performing model, kernel density estimation, is able to detect anomalies with a 99% precision rate, even surpassing the tested neural networks approaches. We also propose a framework that aims to deploy validated models into production IoT environments. We designed an end‐to‐end data flow that autonomously extracts data and classifies them at the anomaly detection server. The envisioned components were designed to be horizontally scaled for a myriad of data streams and machine learning algorithms working in parallel.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/nem.2154

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:intnem:v:32:y:2022:i:1:n:e2154

Access Statistics for this article

More articles in International Journal of Network Management from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:intnem:v:32:y:2022:i:1:n:e2154