Features selection, data mining and finacial risk classification: a comparative study
Salim Lahmiri
Intelligent Systems in Accounting, Finance and Management, 2016, vol. 23, issue 4, 265-275
Abstract:
The aim of this paper is to compare several predictive models that combine features selection techniques with data mining classifiers in the context of credit risk assessment in terms of accuracy, sensitivity and specificity statistics. The t‐statistic, Battacharrayia statistic, the area between the receiver operating characteristic, Wilcoxon statistic, relative entropy, and genetic algorithms were used for the features selection task. The selected features are used to train the support vector machine (SVM) classifier, backpropagation neural network, radial basis function neural network, linear discriminant analysis and naive Bayes classifier. Results from three datasets using a 10‐fold cross‐validation technique showed that the SVM provides the best accuracy under all features selections techniques adopted in the study for all three datasets. Therefore, the SVM is an attractive classifier to be used in real applications for bankruptcy prediction in corporate finance and financial risk management in financial institutions. In addition, we found that our best results are superior to earlier studies on the same datasets.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/isaf.1395
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:23:y:2016:i:4:p:265-275
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().