EconPapers    
Economics at your fingertips  
 

A two‐step system for direct bank telemarketing outcome classification

Salim Lahmiri

Intelligent Systems in Accounting, Finance and Management, 2017, vol. 24, issue 1, 49-55

Abstract: A two‐step system is presented to improve prediction of telemarketing outcomes and to help the marketing management team effectively manage customer relationships in the banking industry. In the first step, several neural networks are trained with different categories of information to make initial predictions. In the second step, all initial predictions are combined by a single neural network to make a final prediction. Particle swarm optimization is employed to optimize the initial weights of each neural network in the ensemble system. Empirical results indicate that the two‐step system presented performs better than all its individual components. In addition, the two‐step system outperforms a baseline one where all categories of marketing information are used to train a single neural network. As a neural networks ensemble model, the proposed two‐step system is robust to noisy and nonlinear data, easy to interpret, suitable for large and heterogeneous marketing databases, fast and easy to implement.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/isaf.1403

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:24:y:2017:i:1:p:49-55

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174

Access Statistics for this article

More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:isacfm:v:24:y:2017:i:1:p:49-55