Corporate governance performance ratings with machine learning
Jan Svanberg,
Tohid Ardeshiri,
Isak Samsten,
Peter Öhman,
Presha E. Neidermeyer,
Tarek Rana,
Natalia Semenova and
Mats Danielson
Intelligent Systems in Accounting, Finance and Management, 2022, vol. 29, issue 1, 50-68
Abstract:
We use machine learning with a cross‐sectional research design to predict governance controversies and to develop a measure of the governance component of the environmental, social, governance (ESG) metrics. Based on comprehensive governance data from 2,517 companies over a period of 10 years and investigating nine machine‐learning algorithms, we find that governance controversies can be predicted with high predictive performance. Our proposed governance rating methodology has two unique advantages compared with traditional ESG ratings: it rates companies' compliance with governance responsibilities and it has predictive validity. Our study demonstrates a solution to what is likely the greatest challenge for the finance industry today: how to assess a company's sustainability with validity and accuracy. Prior to this study, the ESG rating industry and the literature have not provided evidence that widely adopted governance ratings are valid. This study describes the only methodology for developing governance performance ratings based on companies' compliance with governance responsibilities and for which there is evidence of predictive validity.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/isaf.1505
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:29:y:2022:i:1:p:50-68
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().