Automated Induction of Rule‐based Neural Networks from Databases
Rodney M. Goodman and
Padhraic Smyth
Intelligent Systems in Accounting, Finance and Management, 1993, vol. 2, issue 1, 41-54
Abstract:
This paper describes our approach to the problem of automated knowledge acquisition from large databases of examples using an information‐theoretic approach. Our previous research has resulted in practical algorithms (ITRULE) for the automatic induction of rules from large example databases. Utilizing these algorithms, the raw data can be transformed into a set of human readable IF THEN rules, thus giving insight into the knowledge hidden within the data. These rules can then be automatically loaded into an expert system shell. Alternatively, they can be used to build a new type of parallel inference system—a rule‐based neural network. This process enables a prototype expert system to be automatically generated and up and running in a matter of minutes, compared with months using a manual knowledge‐acquisition approach. The resulting expert system can then be used as a sophisticated search and analysis tool to query the original database capable of reasoning with uncertain and incomplete data.
Date: 1993
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/j.1099-1174.1993.tb00033.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:2:y:1993:i:1:p:41-54
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().