A one covariate at a time, multiple testing approach to variable selection in high‐dimensional linear regression models: A replication in a narrow sense
Héctor M. Núñez and
Jesus Otero
Journal of Applied Econometrics, 2021, vol. 36, issue 6, 833-841
Abstract:
Chudik, Kapetanios, & Pesaran (Econometrica 2018, 86, 1479‐1512) propose a one covariate at a time, multiple testing (OCMT) approach to variable selection in high‐dimensional linear regression models as an alternative approach to penalised regression. We offer a narrow replication of their key OCMT results based on the Stata software instead of the original MATLAB routines. Using the new user‐written Stata commands baing and ocmt, we find results that match closely those reported by these authors in their Monte Carlo simulations. In addition, we replicate exactly their findings in the empirical illustration, which relate to top five variables with highest inclusion frequencies based on the OCMT selection method.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/jae.2850
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:36:y:2021:i:6:p:833-841
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().