EconPapers    
Economics at your fingertips  
 

Best linear and quadratic moments for spatial econometric models with an application to spatial interdependence patterns of employment growth in US counties

Fei Jin, Lung‐fei Lee and Kai Yang

Journal of Applied Econometrics, 2024, vol. 39, issue 4, 640-658

Abstract: We provide a novel analytic procedure to construct best linear and quadratic moments of the generalized method of moments estimation for a large class of cross‐sectional network and spatial econometric models. These moments generate an estimator that is asymptotically more efficient than the quasi‐maximum likelihood estimator when the disturbances follow a non‐normal and unknown distribution. We apply this procedure to a high‐order spatial autoregressive model with spatial errors, where the disturbances are heteroskedastic. Two normality tests of disturbances are developed. We apply the model to employment data in US counties, which demonstrates spatial interdependence patterns of regional employment growth.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/jae.3046

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:39:y:2024:i:4:p:640-658

Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252

Access Statistics for this article

Journal of Applied Econometrics is currently edited by M. Hashem Pesaran

More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:japmet:v:39:y:2024:i:4:p:640-658