Bayesian collapsed Gibbs sampling for a stochastic volatility model with a Dirichlet process mixture
Frank C. Z. Wu
Journal of Applied Econometrics, 2024, vol. 39, issue 4, 697-704
Abstract:
This paper replicates the results of the stochastic volatility–Dirichlet process mixture (SV‐DPM) models proposed in Jensen and Maheu (2010) in both a narrow and a wide sense. By using a normal‐Wishart prior and the collapsed Gibbs sampling method, our algorithm can be applied for more general settings, and it is more efficient for sampling the Dirichlet process mixture. For the stochastic volatility component, we adopt the method in Chan (2017) to further increase the overall efficiency of our algorithm. Using the same dataset, we obtain mixed results. Some of the results have significant differences. If we use recent time period dataset, which includes the COVID‐19 pandemic period, the log market portfolio volatility seems to increase in terms of the number of clusters and size of magnitude.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/jae.3040
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:39:y:2024:i:4:p:697-704
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().