Manipulation Test for Multidimensional RDD
Federico Crippa
Journal of Applied Econometrics, 2025, vol. 40, issue 6, 685-696
Abstract:
The causal inference model for the regression discontinuity design (RDD) relies on assumptions that imply the continuity of the density of the assignment (running) variable. The test for this implication is commonly referred to as the manipulation test and is regularly reported in applied research to strengthen the design's validity. The multidimensional RDD (MRDD) extends the RDD to contexts where treatment assignment depends on several running variables. This paper introduces a manipulation test for the MRDD. First, it develops a theoretical model for causal inference with the MRDD, which is used to derive a testable implication on the conditional marginal densities of the running variables. Then, it constructs the test for the implication based on a quadratic form of a vector of statistics separately computed for each marginal density. Finally, the proposed test is compared with alternative procedures commonly employed in applied research.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/jae.3135
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:40:y:2025:i:6:p:685-696
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().