EconPapers    
Economics at your fingertips  
 

Forecasting Forward Defaults with the Discrete‐Time Hazard Model

Ruey‐Ching Hwang and Chih‐Kang Chu

Journal of Forecasting, 2014, vol. 33, issue 2, 108-123

Abstract: ABSTRACT For predicting forward default probabilities of firms, the discrete‐time forward hazard model (DFHM) is proposed. We derive maximum likelihood estimates for the parameters in DFHM. To improve its predictive power in practice, we also consider an extension of DFHM by replacing its constant coefficients of firm‐specific predictors with smooth functions of macroeconomic variables. The resulting model is called the discrete‐time varying‐coefficient forward hazard model (DVFHM). Through local maximum likelihood analysis, DVFHM is shown to be a reliable and flexible model for forward default prediction. We use real panel datasets to illustrate these two models. Using an expanding rolling window approach, our empirical results confirm that DVFHM has better and more robust out‐of‐sample performance on forward default prediction than DFHM, in the sense of yielding more accurate predicted numbers of defaults and predicted survival times. Thus DVFHM is a useful alternative for studying forward default losses in portfolios. Copyright © 2013 John Wiley & Sons, Ltd.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:33:y:2014:i:2:p:108-123

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:33:y:2014:i:2:p:108-123