Correcting the January optimism effect
Philip Hans Franses
Journal of Forecasting, 2020, vol. 39, issue 6, 927-933
Abstract:
Each month, various professional forecasters give forecasts for next year's real gross domestic product (GDP) growth and unemployment. January is a special month, when the forecast horizon moves to the following calendar year. Instead of deleting the January data when analyzing forecast updates, I propose a periodic version of a test regression for weak‐form efficiency. An application of this periodic model for many forecasts across a range of countries shows that in January GDP forecast updates are positive, whereas the forecast updates for unemployment are negative. I document that this January optimism about the new calendar year is detrimental to forecast accuracy. To empirically analyze Okun's law, I also propose a periodic test regression, and its application provides more support for this law.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/for.2670
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:6:p:927-933
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().