Market timing using combined forecasts and machine learning
David A. Mascio,
Frank J. Fabozzi and
J. Kenton Zumwalt
Journal of Forecasting, 2021, vol. 40, issue 1, 1-16
Abstract:
Successful market timing strategies depend on superior forecasting ability. We use a sentiment index model, a kitchen sink logistic regression model, and a machine learning model (least absolute shrinkage and selection operator, LASSO) to forecast 1‐month‐ahead S&P 500 Index returns. In order to determine how successful each strategy is at forecasting the market direction, a “beta optimization” strategy is implemented. We find that the LASSO model outperforms the other models with consistently higher annual returns and lower monthly drawdowns.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1002/for.2690
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:40:y:2021:i:1:p:1-16
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().