EconPapers    
Economics at your fingertips  
 

A model sufficiency test using permutation entropy

Xin Huang, Han Lin Shang and David Pitt

Journal of Forecasting, 2022, vol. 41, issue 5, 1017-1036

Abstract: Using the ordinal‐pattern concept in permutation entropy, we propose a model sufficiency test to study a given model's point prediction accuracy. Compared with some classical model sufficiency tests, such as Broock et al.'s (1996) test, our proposal does not require a sufficient model to eliminate all structures exhibited in the estimated residuals. When the innovations in the investigated data's underlying dynamics show a certain structure, such as higher moment serial dependence, Broock et al.'s (1996) test can lead to erroneous conclusions about the sufficiency of point predictors. Due to the structured innovations, inconsistency between the model sufficiency tests and prediction accuracy criteria can occur. Our proposal fills in this incoherence between model and prediction evaluation approaches and remains valid when the underlying process has nonwhite additive innovation.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.2849

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:41:y:2022:i:5:p:1017-1036

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jforec:v:41:y:2022:i:5:p:1017-1036