Research on occupant injury severity prediction of autonomous vehicles based on transfer learning
Na Yang,
Dongwei Liu,
Qi Liu,
Zhiwei Li,
Tao Liu,
Jianfeng Wang and
Ze Xu
Journal of Forecasting, 2025, vol. 44, issue 1, 79-92
Abstract:
The focus of the future of autonomous vehicles has shifted from feasibility to safety and comfort. The seat of an autonomous vehicle may be equipped with a rotational function, and the occupant's sitting position would be diverse. This poses a higher challenge to occupant injury protection during vehicle collisions. The main objective of the current study is to develop occupant injury prediction models for autonomous vehicles that can be used to predict the injury severity of occupants in different seat orientations and sitting positions. The first step is to establish an occupant crash model database with different seat orientations. It is used to simulate the occupant crash injury database of an autonomous vehicle, considering seat rotation and the back inclination angle. The second step is to establish a pre‐training occupant injury prediction model based on the existing database and then train the autonomous vehicle occupant injury prediction model using an in‐house database based on the transfer learning method. Occupant injury prediction models achieve good accuracy (82.8% on the numerical database and 62.9% on the real verification database) and shorter computational time (4.86 ± 0.33 ms) on the prediction tasks. Finally, the influence of the model input variables is analyzed. This study demonstrates the feasibility of using a small‐sample database based on transfer learning for occupant injury prediction in autonomous vehicles.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.3186
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:44:y:2025:i:1:p:79-92
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().