EconPapers    
Economics at your fingertips  
 

Vector SHAP Values for Machine Learning Time Series Forecasting

Ji Eun Choi, Ji Won Shin and Dong Wan Shin

Journal of Forecasting, 2025, vol. 44, issue 2, 635-645

Abstract: We propose a new vector SHapley Additive exPlanations (SHAP) to interpret machine learning models for forecasting time series using lags of predictor variables. Unlike the standard SHAP measuring the contribution of each lag of each predictor variable, the proposed vector SHAP measures the contribution of the vector of the lags of each variable. The vector SHAP has an advantage of faster computation over the standard SHAP. Some desirable properties of the vector SHAP (vector local accuracy, vector missingness, and vector consistency) are established. A Monte Carlo simulation shows that the vector SHAP has a much faster computing time than the SHAP; the difference of the standard SHAP and the vector SHAP is small; the sampling SHAP is sensitive to the sampling proportion in a range of practical application; the vector SHAP mitigates the sensitivity issue. The vector SHAP is applied to the realized volatility of world major stock price indices of 16 countries for forecasting the realized volatility of South Korea stock price index, KOSPI. Further vectoring by regions of Europe, North America, and Asia yields vector SHAP value for each region which is very close to the sum of vector SHAP values of the countries of the region, illustrating usefulness of the strategy of vectoring.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.3220

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:44:y:2025:i:2:p:635-645

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-04-12
Handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:635-645