On the Generalized Hyers‐Ulam‐Rassias Stability of Quadratic Functional Equations
M. Eshaghi Gordji and
H. Khodaei
Abstract and Applied Analysis, 2009, vol. 2009, issue 1
Abstract:
We achieve the general solution and the generalized Hyers‐Ulam‐Rassias and Ulam‐Gavruta‐Rassias stabilities for quadratic functional equations f(ax + by) + f(ax − by) = (b(a + b)/2)f(x + y) + (b(a + b)/2)f(x − y) + (2a2 − ab − b2)f(x) + (b2 − ab)f(y) where a, b are nonzero fixed integers with b ≠ ±a, −3a, and f(ax + by) + f(ax − by) = 2a2f(x) + 2b2f(y) for fixed integers a, b with a, b ≠ 0 and a ± b ≠ 0.
Date: 2009
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2009/923476
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2009:y:2009:i:1:n:923476
Access Statistics for this article
More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().