EconPapers    
Economics at your fingertips  
 

Linear Maps on Upper Triangular Matrices Spaces Preserving Idempotent Tensor Products

Li Yang, Wei Zhang and Jinli Xu

Abstract and Applied Analysis, 2014, vol. 2014, issue 1

Abstract: Suppose m, n ≥ 2 are positive integers. Let 𝒯n be the space of all n × n complex upper triangular matrices, and let ϕ be an injective linear map on 𝒯m ⊗ 𝒯n. Then ϕ(A ⊗ B) is an idempotent matrix in 𝒯m ⊗ 𝒯n whenever A ⊗ B is an idempotent matrix in 𝒯m ⊗ 𝒯n if and only if there exists an invertible matrix P ∈ 𝒯m ⊗ 𝒯n such that ϕ(A ⊗ B) = P(ξ1(A) ⊗ ξ2(B))P−1, ∀A ∈ 𝒯m, B ∈ 𝒯n, or when m = n, ϕ(A ⊗ B) = P(ξ1(B) ⊗ ξ2(A))P−1, ∀A ∈ 𝒯m, B ∈ 𝒯m, where ξ1([aij]) = [aij] or ξ1([aij]) = [am−i+1, m−j+1] and ξ2([bij]) = [bij] or ξ2([bij]) = [bn−i+1, n−j+1].

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2014/148321

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnlaaa:v:2014:y:2014:i:1:n:148321

Access Statistics for this article

More articles in Abstract and Applied Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnlaaa:v:2014:y:2014:i:1:n:148321