Probabilistic analysis of an asymptotically optimal solution for the completion time variance problem
C.T. Ng,
X. Cai and
T.C.E. Cheng
Naval Research Logistics (NRL), 1999, vol. 46, issue 4, 373-398
Abstract:
Scheduling a set of n jobs on a single machine so as to minimize the completion time variance is a well‐known NP‐hard problem. In this paper, we propose a sequence, which can be constructed in O(n log n) time, as a solution for the problem. Our primary concern is to establish the asymptotical optimality of the sequence within the framework of probabilistic analysis. Our main result is that, when the processing times are randomly and independently drawn from the same uniform distribution, the sequence is asymptotically optimal in the sense that its relative error converges to zero in probability as n increases. Other theoretical results are also derived, including: (i) When the processing times follow a symmetric structure, the problem has 2⌊(n−1)/2⌋ optimal sequences, which include our proposed sequence and other heuristic sequences suggested in the literature; and (ii) when these 2⌊(n−1)/2⌋ sequences are used as approximate solutions for a general problem, our proposed sequence yields the best approximation (in an average sense) while another sequence, which is commonly believed to be a good approximation in the literature, is interestingly the worst. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 373–398, 1999
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/(SICI)1520-6750(199906)46:43.0.CO;2-W
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:46:y:1999:i:4:p:373-398
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().