EconPapers    
Economics at your fingertips  
 

Higher‐order Markov chain models for categorical data sequences

Wai Ki Ching, Eric S. Fung and Michael K. Ng

Naval Research Logistics (NRL), 2004, vol. 51, issue 4, 557-574

Abstract: In this paper we study higher‐order Markov chain models for analyzing categorical data sequences. We propose an efficient estimation method for the model parameters. Data sequences such as DNA and sales demand are used to illustrate the predicting power of our proposed models. In particular, we apply the developed higher‐order Markov chain model to the server logs data. The objective here is to model the users' behavior in accessing information and to predict their behavior in the future. Our tests are based on a realistic web log and our model shows an improvement in prediction. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1002/nav.20017

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:51:y:2004:i:4:p:557-574

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:51:y:2004:i:4:p:557-574