EconPapers    
Economics at your fingertips  
 

Single machine just‐in‐time scheduling problems with two competing agents

Enrique Gerstl and Gur Mosheiov

Naval Research Logistics (NRL), 2014, vol. 61, issue 1, 1-16

Abstract: In scheduling problems with two competing agents, each one of the agents has his own set of jobs to be processed and his own objective function, and both share a common processor. In the single‐machine problem studied in this article, the goal is to find a joint schedule that minimizes the total deviation of the job completion times of the first agent from a common due‐date, subject to an upper bound on the maximum deviation of job completion times of the second agent. The problem is shown to be NP‐hard even for a nonrestrictive due‐date, and a pseudopolynomial dynamic program is introduced and tested numerically. For the case of a restrictive due‐date (a sufficiently small due‐date that may restrict the number of early jobs), a faster pseudopolynomial dynamic program is presented. We also study the multiagent case, which is proved to be strongly NP‐hard. A simple heuristic for this case is introduced, which is tested numerically against a lower bound, obtained by extending the dynamic programming algorithm. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 1–16, 2014

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1002/nav.21562

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:61:y:2014:i:1:p:1-16

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:61:y:2014:i:1:p:1-16