A characterization of optimal base‐stock levels for a multistage serial supply chain
Peter Berling and
Victor Martínez‐ de‐Albéniz
Naval Research Logistics (NRL), 2016, vol. 63, issue 1, 32-46
Abstract:
In this article, we present a multistage model to optimize inventory control decisions under stochastic demand and continuous review. We first formulate the general problem for continuous stages and use a decomposition solution approach: since it is never optimal to let orders cross, the general problem can be broken into a set of single‐unit subproblems that can be solved in a sequential fashion. These subproblems are optimal control problems for which a differential equation must be solved. This can be done easily by recursively identifying coefficients and performing a line search. The methodology is then extended to a discrete number of stages and allows us to compute the optimal solution in an efficient manner, with a competitive complexity. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 32–46, 2016
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/nav.21675
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:63:y:2016:i:1:p:32-46
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().