EconPapers    
Economics at your fingertips  
 

Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks

Julian Schiele, Thomas Koperna and Jens O. Brunner

Naval Research Logistics (NRL), 2021, vol. 68, issue 1, 65-88

Abstract: In a master surgery scheduling (MSS) problem, a hospital's operating room (OR) capacity is assigned to different medical specialties. This task is critical since the risk of assigning too much or too little OR time to a specialty is associated with overtime or deficit hours of the staff, deferral or delay of surgeries, and unsatisfied—or even endangered—patients. Most MSS approaches in the literature focus only on the OR while neglecting the impact on downstream units or reflect a simplified version of the real‐world situation. We present the first prediction model for the integrated OR scheduling problem based on machine learning. Our three‐step approach focuses on the intensive care unit (ICU) and reflects elective and urgent patients, inpatients and outpatients, and all possible paths through the hospital. We provide an empirical evaluation of our method with surgery data for Universitätsklinikum Augsburg, a German tertiary care hospital with 1700 beds. We show that our model outperforms a state‐of‐the‐art model by 43% in number of predicted beds. Our model can be used as supporting tool for hospital managers or incorporated in an optimization model. Eventually, we provide guidance to support hospital managers in scheduling surgeries more efficiently.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1002/nav.21929

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:68:y:2021:i:1:p:65-88

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:68:y:2021:i:1:p:65-88