Trapped Greenhouse Gases in the Permafrost Active Layer: Preliminary Results for Methane Peaks in Vertical Profiles of Frozen Alaskan Soil Cores
Eunji Byun,
Ji‐Woong Yang,
Yongwon Kim and
Jinho Ahn
Permafrost and Periglacial Processes, 2017, vol. 28, issue 2, 477-484
Abstract:
Degradation of organic carbon stored in permafrost may represent an additional source of atmospheric greenhouse gases (GHGs) in a warming climate. However, there is no clear understanding of how seasonal freeze–thaw affects gas permeability and emission of methane in permafrost soils, in part due to the lack of chemical and physical characterisation of the soils. Here, we report vertical profiles of CO2, CH4 and other soil properties with resolutions of 0.05–0.1 m depth from five soil cores, drilled to 0.9 m depth, in Alaskan permafrost during the early spring of 2013, when the ground was frozen under snow cover. Two cores from tundra and black spruce bog showed sudden increases in methane concentration (up to 416 µmol litre−1soil), indicating excess CH4 trapped in gas‐impermeable soil layers during the freezing period. Active‐layer cooling in late autumn, producing a frozen surface and relatively warm sub‐surface, may have allowed underground microbial activity and facilitated CH4 production, while the upward transport of CH4 was hampered by the frost. Our preliminary results show that estimating annual GHG efflux from permafrost regions can be complicated because of heterogeneous distributions of trapped methane within soil columns. Copyright © 2016 John Wiley & Sons, Ltd.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/ppp.1935
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:perpro:v:28:y:2017:i:2:p:477-484
Access Statistics for this article
More articles in Permafrost and Periglacial Processes from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().