EconPapers    
Economics at your fingertips  
 

Artificial intelligence‐driven sustainability: Enhancing carbon capture for sustainable development goals– A review

Sivasubramanian Manikandan, Rangarajan Sindhu Kaviya, Dhamodharan Hemnath Shreeharan, Ramasamy Subbaiya, Sundaram Vickram, Natchimuthu Karmegam, Woong Kim and Muthusamy Govarthanan

Sustainable Development, 2025, vol. 33, issue 2, 2004-2029

Abstract: Artificial intelligence (AI) and environmental points are equally important components within the response to local weather change. Therefore, based on the efforts of reducing carbon emissions more efficiently and effectively, this study tries to focus on AI integration with carbon capture technology. The urgency of tackling climate change means we need more advanced carbon capture, and this is an area where AI can make a huge impact in how these technologies are operated and managed. It will minimize manufacturing emissions and improve both resource efficiency as well as our planet's environmental footprint by turning waste into something of value again. Artificial intelligence could be leveraged to analyze huge data sets from carbon capture plants, searching for optimal system settings and more efficient ways of identifying patterns in the available information at a larger scale than currently possible. In addition, AI incorporated sensors and monitoring mechanisms in the supply chain can identify any operational failure at reception itself allowing for timely action to protect those areas. Artificial intelligence also helps generative design for carbon capture materials, which allows researchers to explore new types of carbon‐absorbing material, including metal–organic frameworks and polymeric materials that are important in industrial CO2, such as moisture. In addition, it increases the accuracy of reservoir simulations and controls CO2 injection systems for storage or enhanced oil recovery. Through applying AI algorithms on reservoir geology, production performance and real‐time data this study would like to facilitate the optimization of injection processes as well as minimize CO2 emissions while assuring a maximum efficiency. Artificial intelligence integrates with renewable‐based carbon capture efforts that can be employed by AI‐driven smart grid systems to improve carbon capture methods.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/sd.3222

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:sustdv:v:33:y:2025:i:2:p:2004-2029

Access Statistics for this article

Sustainable Development is currently edited by Richard Welford

More articles in Sustainable Development from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-04-03
Handle: RePEc:wly:sustdv:v:33:y:2025:i:2:p:2004-2029