EconPapers    
Economics at your fingertips  
 

Data assimilation in the geosciences: An overview of methods, issues, and perspectives

Alberto Carrassi, Marc Bocquet, Laurent Bertino and Geir Evensen

Wiley Interdisciplinary Reviews: Climate Change, 2018, vol. 9, issue 5

Abstract: We commonly refer to state estimation theory in geosciences as data assimilation (DA). This term encompasses the entire sequence of operations that, starting from the observations of a system, and from additional statistical and dynamical information (such as a dynamical evolution model), provides an estimate of its state. DA is standard practice in numerical weather prediction, but its application is becoming widespread in many other areas of climate, atmosphere, ocean, and environment modeling; in all circumstances where one intends to estimate the state of a large dynamical system based on limited information. While the complexity of DA, and of the methods thereof, stands on its interdisciplinary nature across statistics, dynamical systems, and numerical optimization, when applied to geosciences, an additional difficulty arises by the continually increasing sophistication of the environmental models. Thus, in spite of DA being nowadays ubiquitous in geosciences, it has so far remained a topic mostly reserved to experts. We aim this overview article at geoscientists with a background in mathematical and physical modeling, who are interested in the rapid development of DA and its growing domains of application in environmental science, but so far have not delved into its conceptual and methodological complexities. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1002/wcc.535

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:wirecc:v:9:y:2018:i:5:n:e535

Access Statistics for this article

More articles in Wiley Interdisciplinary Reviews: Climate Change from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:wirecc:v:9:y:2018:i:5:n:e535