Chaotic expansion of powers and martingale representation (v1.5)
Farshid Jamshidian
GE, Growth, Math methods from University Library of Munich, Germany
Abstract:
This paper extends a recent martingale representation result of [N-S] for a Levy process to filtrations generated by a rather large class of semimartingales. As in [N-S], we assume the underlying processes have moments of all orders, but here we allow angle brackets to be stochastic. Following their approach, including a chaotic expansion, and incorporating an idea of strong orthogonalization from [D], we show that the stable subspace generated by Teugels martingales is dense in the space of square-integrable martingales, yielding the representation. While discontinuities are of primary interest here, the special case of a (possibly infinite-dimensional) Brownian filtration is an easy consequence.
Keywords: Martingale representation; stochastic integration; stable subspaces; power brackets; Teugels martingales; polynomial; chaos; Hilbert space direct sum decomposition; Levy processes; finite moements semimartingales; dense. (search for similar items in EconPapers)
JEL-codes: C G (search for similar items in EconPapers)
Pages: 22 pages
Date: 2005-07-15
New Economics Papers: this item is included in nep-fin
Note: Type of Document - pdf; pages: 22. Martingale representation results for filtration generated by a large class of processes, including Levy processes. (Minor improvements to version 1.4)
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://econwpa.ub.uni-muenchen.de/econ-wp/ge/papers/0507/0507009.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wpa:wuwpge:0507009
Access Statistics for this paper
More papers in GE, Growth, Math methods from University Library of Munich, Germany
Bibliographic data for series maintained by EconWPA ( this e-mail address is bad, please contact ).